Régressions linéaires

  • Cours (CM) -
  • Cours intégrés (CI) 18h
  • Travaux dirigés (TD) -
  • Travaux pratiques (TP) -
  • Travail étudiant (TE) -

Langue de l'enseignement : Français

Description du contenu de l'enseignement

L’objectif du cours est dans un premier temps de présenter les principes théoriques de la mise en œuvre des modèles de régression linéaires. Dans un deuxième temps, il s’agira de mettre en œuvre les différents types de modélisations linéaires (régressions simples, régression multiples, intégration des effets d’interaction, etc.) à partir du logiciel R. Dans un troisième temps, il s’agira d’interpréter les résultats obtenus et de réfléchir à la mise en œuvre des modèles les plus en adéquation avec le problème posé.

Compétences à acquérir

  • Identifier le type de modélisation adéquate à la nature des variables
  • Produire des régressions linéaires à partir du logiciel R
  • Évaluer la qualité des modélisations et en analyser les résultats

Bibliographie, lectures recommandées

Bressoux, P, 2010, « Modélisation statistique appliquée aux sciences sociales », 2e édition, De boeck Supérieur, Collection Méthodes en sciences humaines, 464 p.
Cornillon P.-A., et Matzner-Lober, 2010, « Régression avec R », Springer-Verlag Paris, 246 p.
Larmarange J., et al., 2017, « Introduction à l’analyse d’enquêtes avec R et RStudio », http://larmarange.github.io/analyse-R/analyse-R.pdf

Pré-requis obligatoires

  • Maîtrise des fonctions R permettant la production de graphiques et indicateurs statistiques de base
  • Connaissances théoriques en statistiques descriptives, inférentielles, probabilistes, bi-variées.

Contact

Faculté des sciences sociales

22, rue René Descartes
67084 STRASBOURG CEDEX
0368856617

Formulaire de contact

Responsable

Nicolas Cauchi-Duval

Intervenants

Nicolas Cauchi-Duval