- Cours (CM) -
- Cours intégrés (CI) 78h
- Travaux dirigés (TD) -
- Travaux pratiques (TP) -
- Travail étudiant (TE) -
Langue de l'enseignement : Français
Niveau de l'enseignement : B2-Avancé - Utilisateur indépendant
Description du contenu de l'enseignement
Construction de Stevin de R (développements décimaux illimités) en tant que corps ordonné. La droite achevée bar R. Manipulation d’inégalités et inégalité triangulaire (dans C). Bornes supérieures et inférieures.
- Suites réelles. Limite. Critères de convergence liés à l’ordre sur R. Exemples de parties denses de R. Théorème de Bolzano-Weierstrass.
- Limites de fonctions définies sur un intervalle, continuité. Caractérisation séquentielle de la continuité, cas d’égalité de fonctions continues sur des parties denses. Les grands théorèmes : théorème des bornes, des valeurs intermédiaires, de la bijection monotone.
- Dérivabilité par taux d’accroissement. Dérivation des opérations arithmétiques, de la composition, de la réciproque. Théorèmes de Rolle et des accroissements finis, applications : prolongement C^1 et Théorème de Darboux.
- DL et formule de Taylor-Lagrange.
- Continuité et dérivabilité des fonctions usuelles : construction rigoureuse des blocs transcendants et démonstration de leur dérivabilité (exp, cos et sin). Les grands théorèmes : une fonction usuelle est continue là où elle est définie, dérivable là où sa dérivée symbolique est également définie.
- Étude des suites récursives xn+1=f(xn) avec f usuelle.
- Suites réelles. Limite. Critères de convergence liés à l’ordre sur R. Exemples de parties denses de R. Théorème de Bolzano-Weierstrass.
- Limites de fonctions définies sur un intervalle, continuité. Caractérisation séquentielle de la continuité, cas d’égalité de fonctions continues sur des parties denses. Les grands théorèmes : théorème des bornes, des valeurs intermédiaires, de la bijection monotone.
- Dérivabilité par taux d’accroissement. Dérivation des opérations arithmétiques, de la composition, de la réciproque. Théorèmes de Rolle et des accroissements finis, applications : prolongement C^1 et Théorème de Darboux.
- DL et formule de Taylor-Lagrange.
- Continuité et dérivabilité des fonctions usuelles : construction rigoureuse des blocs transcendants et démonstration de leur dérivabilité (exp, cos et sin). Les grands théorèmes : une fonction usuelle est continue là où elle est définie, dérivable là où sa dérivée symbolique est également définie.
- Étude des suites récursives xn+1=f(xn) avec f usuelle.
Compétences à acquérir
Résoudre de manière autonome des problèmes liés ou faisant appel aux formules de Taylor, au calcul intégral.
Bibliographie, lectures recommandées
Loic Teyssier, Polycopié d’analyse réelle.
Liret et Martinais - Algèbre 1e année - Dunod – 2003
Liret et Martinais - Algèbre 1e année - Dunod – 2003
Pré-requis obligatoires
Contact
UFR de mathématique et d'informatique
7, rue René Descartes67084 STRASBOURG CEDEX
0368850200
Formulaire de contact