Algèbre : Polynômes et réduction des endomorphismes

  • Cours (CM) 26h
  • Cours intégrés (CI) -
  • Travaux dirigés (TD) 45h
  • Travaux pratiques (TP) -
  • Travail étudiant (TE) -

Langue de l'enseignement : Français

Niveau de l'enseignement : B2-Avancé - Utilisateur indépendant

Description du contenu de l'enseignement

- Polynômes : définition, somme, produit, division euclidienne, pgcd, ppcm, relation de Bézout.
- Relations coefficients-racines. Théorème de d’Alembert-Gauss.
- Décomposition en facteurs irréductibles d’un polynôme à coefficients réels ou complexes.
- Fractions rationnelles, décomposition en éléments simples.
- Déterminants : Groupe symétrique, signature.
- Déterminants des matrices. Comatrice, inverse d’une matrice.
- Réduction des matrices et des endomorphismes : valeurs et vecteurs propres, polynôme caractéristique, diagonalisation, trigonalisation. Polynôme minimal, théorème de Cayley-Hamilton.
- Endomorphismes nilpotents.
- Décomposition de Dunford.
- Application : suites définies par une récurrence linéaire.
 

Contact

UFR de mathématique et d'informatique

7, rue René Descartes
67084 STRASBOURG CEDEX
0368850200

Formulaire de contact