- Cours (CM) 20h
- Cours intégrés (CI) -
- Travaux dirigés (TD) 34h
- Travaux pratiques (TP) -
- Travail étudiant (TE) -
Langue de l'enseignement : Français
Niveau de l'enseignement : B2-Avancé - Utilisateur indépendant
Description du contenu de l'enseignement
1) Définitions et notions générales : topologie, ouverts, fermés, voisinage, adhérence, intérieur. Topologie induite par une distance, sousespace
topologique. Convergence des suites. Applications continues, homéomorphismes. 2) Exemples et constructions d'espaces topologiques.
Produits, quotients (par exemple par l'action d'un groupe), recollements.
Exemple des surfaces. 3) Connexité, connexité par arcs. 4) Espaces compacts. Le point de vue des recouvrements. Caractérisation par les
suites dans les espaces métriques. Procédé d'extraction diagonale; un produit dénombrable d'espaces métriques compacts est compact. La boule unité fermée d'un evn est compacte si et seulement si la dimension est finie. Exemples de parties compactes en analyse (th. d'Ascoli) 5) Espaces métriques complets. Exemples d'espaces de Banach (fonctions continues bornées, L^p). Théorème du point fixe (rappel). Théorème de complétion et illustrations (nombres p-adiques).
topologique. Convergence des suites. Applications continues, homéomorphismes. 2) Exemples et constructions d'espaces topologiques.
Produits, quotients (par exemple par l'action d'un groupe), recollements.
Exemple des surfaces. 3) Connexité, connexité par arcs. 4) Espaces compacts. Le point de vue des recouvrements. Caractérisation par les
suites dans les espaces métriques. Procédé d'extraction diagonale; un produit dénombrable d'espaces métriques compacts est compact. La boule unité fermée d'un evn est compacte si et seulement si la dimension est finie. Exemples de parties compactes en analyse (th. d'Ascoli) 5) Espaces métriques complets. Exemples d'espaces de Banach (fonctions continues bornées, L^p). Théorème du point fixe (rappel). Théorème de complétion et illustrations (nombres p-adiques).
Contact
UFR de mathématique et d'informatique
7, rue René Descartes67084 STRASBOURG CEDEX
0368850200
Formulaire de contact