Statistics for omics

  • Cours (CM) 6h
  • Cours intégrés (CI) -
  • Travaux dirigés (TD) 4h
  • Travaux pratiques (TP) -
  • Travail étudiant (TE) -

Langue de l'enseignement : Français

Description du contenu de l'enseignement

Acquire basic skills to analyze High-dimensional omics data.
 

Compétences à acquérir

  • Understand the different features of the three dimension reduction techniques : Principal Component Analysis (PCA), Multidimensional Scaling (MDS), Stochastic Neighbour Embedding (SNE)
  • Know some methods of Classification of High-dimensional omics data: Bayes rule, linear and quadratic discriminant analysis
  • Understand some methods of Clustering of High-dimensional omics data : K-means, Agglomerative clustering (dendogram)

Bibliographie, lectures recommandées

Susan Holmes, Wolfgang Huber. Modern Statistics for Modern Biology. http://web.stanford.edu/class/bios221/book/