- Cours (CM) 30h
- Cours intégrés (CI) -
- Travaux dirigés (TD) -
- Travaux pratiques (TP) -
- Travail étudiant (TE) 90h
Langue de l'enseignement : Anglais
Niveau de l'enseignement : B2-Avancé - Utilisateur indépendant
Description du contenu de l'enseignement
This course provides a foundation in probability and statistics and introduces basic regression analysis. In probability theory, we cover the basic concepts from probability spaces over random variables up to convergence. This theoretical equipment is needed for inductive statistics and regression analysis that aims at drawing conclusions from samples about causes and regularities underlying the population.
Compétences à acquérir
- Familiarity with the basic concepts in probability, statistics, and regression analysis : awareness of theoretical knowledge and first experience in handling and describing data, estimation, and testing using the software R.
- Capacity to compile basic descriptives, and to formulate and test hypothesis about the data generation process, including basic regression analysis
Bibliographie, lectures recommandées
- Cameron, A.C. and Trivedi, P.K. (2005), “Microeconometrics: Methods and Applications”, Cambridge University Press, New York.
- Dekking, F.M., Kraaikamp, C., Lopuhaä, H.P., Meester, L.E. (2005) “A Modern Introduction to Probability and Statistics: Understanding Why and How”, Springer-Verlag London Limited.
- Li, Q. and Racine, J.S. (2007), “Nonparametric Econometrics: Theory and Practice”, Princeton University Press.
- Mittelhammer, R.C. (2013) “Mathematical Statistics for Economics and Business, Second Edition”, Springer Science+Business Media New York.
- Schumacker, R., Tomek, S. (2013) “Understanding Statistics Using R”, Springer Science+Business Media New York.
Contact
Faculté des sciences économiques et de gestion (FSEG)
61, avenue de la Forêt Noire67085 STRASBOURG CEDEX
0368852178
Formulaire de contact
Responsable
Moritz Muller